

Side Gadgets

	
	
	
	
	
	

	Home
	Pages
 	Custom Pages
 	Archive Page
	Label page
	Search Page

	Static Page
	Typography
	Short Codes

	Posts
 	Post with right sidebar
	Post with left sidebar
	Post without sidebar
	Post with full width title

	One Mega

	Multi Mega

	Error 404
	

110 SQL Query Interview Questions and Practice Exercises for Experienced and Fresher

 Welcome to SQL Query Practice Blog

 Hello and welcome to our SQL Query Practice Blog! If you are looking to enhance your SQL skills and become proficient in writing powerful database queries, you've come to the right place. This blog is dedicated to providing you with a comprehensive set of SQL practice exercises that cater to both beginners and experienced users.

 Why Practice SQL Queries?

 SQL (Structured Query Language) is the standard language for managing and querying relational databases. Whether you are a developer, data analyst, or database administrator, having a strong foundation in SQL is essential for effectively working with data. By practicing SQL queries, you can sharpen your problem-solving abilities, improve data retrieval efficiency, and gain valuable insights from complex data sets.

 What to Expect

 Our SQL Query Practice Blog is divided into multiple sections, each covering different levels of complexity. We start with simple queries for beginners, introducing essential SQL concepts and gradually move towards more advanced scenarios for experienced users. Each section includes practical examples, explanations, and HTML-formatted SQL queries that you can easily copy and paste into your practice environment or projects.

 How to Use this Blog

 Feel free to navigate through the various sections of this blog based on your SQL expertise. For beginners, start with the foundational queries to familiarize yourself with the basic SQL syntax. As you gain confidence, move on to the intermediate and advanced sections to tackle more challenging data manipulation tasks. Don't forget to test and experiment with the queries to reinforce your learning.

 Start Practicing Now!

 Whether you are a novice or an SQL expert seeking to refine your skills, our SQL Query Practice Blog has something for everyone. We encourage you to dive in, practice regularly, and build a solid SQL foundation that will set you on the path to becoming a proficient data wrangler.

 Happy querying and enjoy your journey towards SQL mastery!

Employees Table	EmployeeID	FirstName	LastName	Department	Salary	HireDate
	1	John	Doe	HR	50000.00	2020-01-15
	2	Jane	Smith	Marketing	55000.00	2019-05-20
	3	Mike	Johnson	IT	60000.00	2018-09-10
	4	Emily	Williams	Finance	58000.00	2021-03-12
	5	David	Lee	Operations	52000.00	2017-11-25

Customers Table	CustomerID	FirstName	LastName	Email	Address	City	Country
	1	Michael	Brown	michael@example.com	123 Main St	New York	USA
	2	Emma	Johnson	emma@example.com	456 Elm St	Los Angeles	USA
	3	Oliver	Smith	oliver@example.com	789 Oak St	Chicago	USA
	4	Sophia	Williams	sophia@example.com	101 Maple Ave	Houston	USA
	5	James	Lee	james@example.com	222 Pine St	San Francisco	USA

Orders Table	OrderID	CustomerID	OrderDate	TotalAmount	IsShipped
	1	3	2023-07-01	100.00	1
	2	1	2023-07-05	250.00	1
	3	4	2023-07-10	180.00	0
	4	2	2023-07-15	300.00	1
	5	5	2023-07-20	120.00	1

SQL Script to create all above three tables.

--Employees table
CREATE TABLE Employees (
 EmployeeID INT PRIMARY KEY,
 FirstName VARCHAR(50),
 LastName VARCHAR(50),
 Department VARCHAR(50),
 Salary DECIMAL(10, 2),
 HireDate DATE
);

INSERT INTO Employees (EmployeeID, FirstName, LastName, Department, Salary, HireDate)
VALUES
 (1, 'John', 'Doe', 'HR', 50000.00, '2020-01-15'),
 (2, 'Jane', 'Smith', 'Marketing', 55000.00, '2019-05-20'),
 (3, 'Mike', 'Johnson', 'IT', 60000.00, '2018-09-10'),
 (4, 'Emily', 'Williams', 'Finance', 58000.00, '2021-03-12'),
 (5, 'David', 'Lee', 'Operations', 52000.00, '2017-11-25');

--Customers table
CREATE TABLE Customers (
 CustomerID INT PRIMARY KEY,
 FirstName VARCHAR(50),
 LastName VARCHAR(50),
 Email VARCHAR(100),
 Address VARCHAR(200),
 City VARCHAR(50),
 Country VARCHAR(50)
);

INSERT INTO Customers (CustomerID, FirstName, LastName, Email, Address, City, Country)
VALUES
 (1, 'Michael', 'Brown', 'michael@example.com', '123 Main St', 'New York', 'USA'),
 (2, 'Emma', 'Johnson', 'emma@example.com', '456 Elm St', 'Los Angeles', 'USA'),
 (3, 'Oliver', 'Smith', 'oliver@example.com', '789 Oak St', 'Chicago', 'USA'),
 (4, 'Sophia', 'Williams', 'sophia@example.com', '101 Maple Ave', 'Houston', 'USA'),
 (5, 'James', 'Lee', 'james@example.com', '222 Pine St', 'San Francisco', 'USA');

--Orders table
CREATE TABLE Orders (
 OrderID INT PRIMARY KEY,
 CustomerID INT,
 OrderDate DATE,
 TotalAmount DECIMAL(10, 2),
 IsShipped BIT
);

INSERT INTO Orders (OrderID, CustomerID, OrderDate, TotalAmount, IsShipped)
VALUES
 (1, 3, '2023-07-01', 100.00, 1),
 (2, 1, '2023-07-05', 250.00, 1),
 (3, 4, '2023-07-10', 180.00, 0),
 (4, 2, '2023-07-15', 300.00, 1),
 (5, 5, '2023-07-20', 120.00, 1);

SQL Queries - Beginner Level

 1. Retrieve the top 3 highest-paid employees.

SELECT TOP 3 * FROM Employees ORDER BY Salary DESC;

 2. Find the customers who have placed orders.

SELECT DISTINCT Customers.CustomerID, FirstName, LastName FROM Customers
INNER JOIN Orders ON Customers.CustomerID = Orders.CustomerID;

 3. Show employees and their department names in alphabetical order.

SELECT Employees.*, Departments.Department FROM Employees
LEFT JOIN Departments ON Employees.Department = Departments.Department
ORDER BY Departments.Department;

 4. Find the customers who have placed orders for more than once.

SELECT Customers.* FROM Customers
INNER JOIN Orders ON Customers.CustomerID = Orders.CustomerID
GROUP BY Customers.CustomerID, FirstName, LastName
HAVING COUNT(Orders.OrderID) > 1;

 5. Display orders with the customer's first name and last name.

SELECT Orders.*, Customers.FirstName, Customers.LastName FROM Orders
INNER JOIN Customers ON Orders.CustomerID = Customers.CustomerID;

 6. Retrieve employees hired in the year 2022.

SELECT * FROM Employees WHERE YEAR(HireDate) = 2022;

 7. Show customers who have placed orders on different dates.

SELECT DISTINCT Customers.* FROM Customers
INNER JOIN Orders ON Customers.CustomerID = Orders.CustomerID
GROUP BY Customers.CustomerID, FirstName, LastName
HAVING COUNT(DISTINCT Orders.OrderDate) > 1;

 8. Retrieve the employees with the second and third highest salaries.

SELECT * FROM Employees
WHERE Salary IN (SELECT DISTINCT TOP 2 Salary FROM Employees ORDER BY Salary DESC);

 9. Find the total number of orders placed by each customer.

SELECT Customers.CustomerID, FirstName, LastName, COUNT(Orders.OrderID) AS TotalOrders FROM Customers
LEFT JOIN Orders ON Customers.CustomerID = Orders.CustomerID
GROUP BY Customers.CustomerID, FirstName, LastName;

 10. Retrieve employees who work in the IT department.

SELECT * FROM Employees WHERE Department = 'IT';

11. Find customers who have not placed any orders.

SELECT Customers.* FROM Customers
LEFT JOIN Orders ON Customers.CustomerID = Orders.CustomerID
WHERE Orders.CustomerID IS NULL;

 12. Show the average salary of employees in each department.

SELECT Department, AVG(Salary) AS AverageSalary FROM Employees
GROUP BY Department;

 13. Retrieve the employees with salaries above the average salary in their respective department.

SELECT E1.* FROM Employees E1
INNER JOIN (
 SELECT Department, AVG(Salary) AS AvgSalary FROM Employees GROUP BY Department
) E2 ON E1.Department = E2.Department
WHERE E1.Salary > E2.AvgSalary;

 14. Display the names of employees who were hired on the same day as 'John Smith'.

SELECT FirstName, LastName FROM Employees
WHERE HireDate = (SELECT HireDate FROM Employees WHERE FirstName = 'John' AND LastName = 'Smith');

 15. Find customers who have placed orders for consecutive days.

SELECT DISTINCT Customers.* FROM Customers
INNER JOIN Orders O1 ON Customers.CustomerID = O1.CustomerID
INNER JOIN Orders O2 ON Customers.CustomerID = O2.CustomerID
WHERE DATEDIFF(DAY, O1.OrderDate, O2.OrderDate) = 1;

16. Find the nth highest salary from the Employees table.

DECLARE @N INT = 5; -- Change N to desired nth value
SELECT DISTINCT Salary FROM Employees
ORDER BY Salary DESC
OFFSET @N - 1 ROWS FETCH NEXT 1 ROW ONLY;

 17. Show customers who have placed orders every day for the past week.

SELECT DISTINCT C.* FROM Customers C
WHERE NOT EXISTS (
 SELECT DATEADD(DAY, -7, GETDATE()) AS DateLimit
 WHERE NOT EXISTS (
 SELECT * FROM Orders O
 WHERE C.CustomerID = O.CustomerID
 AND O.OrderDate > DATEADD(DAY, -7, GETDATE())
 AND O.OrderDate <= GETDATE()
)
);

 18. Retrieve orders that were shipped after their expected shipment date.

SELECT * FROM Orders
WHERE IsShipped = 1 AND ShipDate > ExpectedShipDate;

 19. Display the employees with their age (in years) calculated from the HireDate.

SELECT EmployeeID, FirstName, LastName, DATEDIFF(YEAR, HireDate, GETDATE()) AS Age FROM Employees;

 20. Find the customers who have not placed any orders in the last 3 months.

SELECT DISTINCT Customers.* FROM Customers
WHERE NOT EXISTS (
 SELECT * FROM Orders
 WHERE Customers.CustomerID = Orders.CustomerID
 AND OrderDate >= DATEADD(MONTH, -3, GETDATE())
);

21. Retrieve the list of employees and their managers.

SELECT E.EmployeeID, E.FirstName, E.LastName, M.FirstName AS ManagerFirstName, M.LastName AS ManagerLastName
FROM Employees E
LEFT JOIN Employees M ON E.ManagerID = M.EmployeeID;

 22. Show the customers who have the same first name or last name as employees.

SELECT DISTINCT C.* FROM Customers C
WHERE EXISTS (
 SELECT * FROM Employees E
 WHERE C.FirstName = E.FirstName OR C.LastName = E.LastName
);

 23. Find the orders placed by the customers from the same city as 'John Smith'.

SELECT O.* FROM Orders O
INNER JOIN Customers C ON O.CustomerID = C.CustomerID
WHERE C.City = (SELECT City FROM Customers WHERE FirstName = 'John' AND LastName = 'Smith');

 24. Retrieve customers who have placed orders for more than the average order amount.

SELECT C.* FROM Customers C
INNER JOIN Orders O ON C.CustomerID = O.CustomerID
WHERE O.TotalAmount > (SELECT AVG(TotalAmount) FROM Orders);

SQL Queries - Intermediate Level

 25. Show the departments along with the number of employees in each department.

SELECT Department, COUNT(*) AS EmployeeCount FROM Employees
GROUP BY Department;

 26. Retrieve the latest order for each customer.

SELECT O1.* FROM Orders O1
LEFT JOIN Orders O2 ON O1.CustomerID = O2.CustomerID AND O1.OrderDate < O2.OrderDate
WHERE O2.OrderID IS NULL;

 27. Find the customers who have placed at least one order in each city.

SELECT C.* FROM Customers C
WHERE NOT EXISTS (
 SELECT DISTINCT City FROM Customers
 WHERE NOT EXISTS (
 SELECT * FROM Orders
 WHERE Customers.CustomerID = Orders.CustomerID
 AND Customers.City = Orders.ShipCity
)
);

 28. Show the employees who have the same hire date as their manager.

SELECT E.* FROM Employees E
INNER JOIN Employees M ON E.ManagerID = M.EmployeeID
WHERE E.HireDate = M.HireDate;

 29. Retrieve the customers who have placed orders on all weekdays (Monday to Friday).

SELECT C.* FROM Customers C
WHERE NOT EXISTS (
 SELECT * FROM Orders
 WHERE C.CustomerID = Orders.CustomerID
 AND DATEPART(WEEKDAY, OrderDate) NOT BETWEEN 2 AND 6
);

 30. Find the total sales amount for each year.

SELECT YEAR(OrderDate) AS Year, SUM(TotalAmount) AS TotalSales FROM Orders
GROUP BY YEAR(OrderDate);

31. Find the employees whose first name starts with 'J' and last name starts with 'S'.

SELECT * FROM Employees
WHERE FirstName LIKE 'J%' AND LastName LIKE 'S%';

 32. Retrieve customers who have placed orders with a total amount greater than their average order amount.

SELECT C.* FROM Customers C
INNER JOIN (
 SELECT CustomerID, AVG(TotalAmount) AS AvgOrderAmount FROM Orders
 GROUP BY CustomerID
) O ON C.CustomerID = O.CustomerID
INNER JOIN Orders O2 ON C.CustomerID = O2.CustomerID
WHERE O2.TotalAmount > O.AvgOrderAmount;

 33. Show the employees who have not been assigned any department.

SELECT * FROM Employees
WHERE Department IS NULL;

 34. Retrieve the top 5 customers with the highest total order amount.

SELECT TOP 5 C.*, SUM(O.TotalAmount) AS TotalOrderAmount
FROM Customers C
INNER JOIN Orders O ON C.CustomerID = O.CustomerID
GROUP BY C.CustomerID, C.FirstName, C.LastName
ORDER BY TotalOrderAmount DESC;

 35. Find the employees whose age is a prime number.

SELECT * FROM Employees
WHERE DATEDIFF(YEAR, HireDate, GETDATE()) IN (
 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59
);

36. Retrieve the customers who have placed orders on all weekdays (Monday to Friday) in the last month.

SELECT C.* FROM Customers C
WHERE NOT EXISTS (
 SELECT * FROM Orders
 WHERE C.CustomerID = Orders.CustomerID
 AND DATEPART(WEEKDAY, OrderDate) NOT BETWEEN 2 AND 6
 AND OrderDate >= DATEADD(MONTH, -1, GETDATE())
);

 37. Show the departments with the highest average employee salary.

SELECT TOP 1 Department, AVG(Salary) AS AverageSalary
FROM Employees
GROUP BY Department
ORDER BY AVG(Salary) DESC;

 38. Retrieve employees who were hired in the same year and month as 'John Smith'.

SELECT * FROM Employees
WHERE YEAR(HireDate) = YEAR((SELECT HireDate FROM Employees WHERE FirstName = 'John' AND LastName = 'Smith'))
AND MONTH(HireDate) = MONTH((SELECT HireDate FROM Employees WHERE FirstName = 'John' AND LastName = 'Smith'));

 39. Find the customers with the longest time between two consecutive orders.

SELECT DISTINCT C.* FROM Customers C
INNER JOIN Orders O1 ON C.CustomerID = O1.CustomerID
INNER JOIN Orders O2 ON C.CustomerID = O2.CustomerID AND O1.OrderDate < O2.OrderDate
WHERE DATEDIFF(DAY, O1.OrderDate, O2.OrderDate) = (
 SELECT MAX(DATEDIFF(DAY, OrderDate, (SELECT MIN(OrderDate) FROM Orders O3 WHERE O3.CustomerID = O1.CustomerID AND O3.OrderDate > O1.OrderDate)))
 FROM Orders O1
 WHERE O1.CustomerID = C.CustomerID
);

 40. Show the employees who have the same salary as their manager.

SELECT E.* FROM Employees E
INNER JOIN Employees M ON E.ManagerID = M.EmployeeID
WHERE E.Salary = M.Salary;

 41. Find the top 5 highest-earning departments along with the total salary expense for each department.

SELECT TOP 5 Department, SUM(Salary) AS TotalSalaryExpense
FROM Employees
GROUP BY Department
ORDER BY TotalSalaryExpense DESC;

 42. Retrieve the employees who have been assigned to multiple departments.

SELECT EmployeeID, FirstName, LastName
FROM Employees
WHERE EmployeeID IN (
 SELECT EmployeeID
 FROM Employees
 GROUP BY EmployeeID
 HAVING COUNT(DISTINCT Department) > 1
);

 43. Show the cumulative total amount of orders for each customer in ascending order of the order date.

SELECT OrderID, CustomerID, OrderDate, TotalAmount,
 SUM(TotalAmount) OVER (PARTITION BY CustomerID ORDER BY OrderDate) AS CumulativeTotalAmount
FROM Orders;

 44. Retrieve the employees who have the same salary as the highest-earning employee in each department.

SELECT E.*
FROM Employees E
INNER JOIN (
 SELECT Department, MAX(Salary) AS MaxSalary
 FROM Employees
 GROUP BY Department
) MaxSalaries ON E.Department = MaxSalaries.Department AND E.Salary = MaxSalaries.MaxSalary;

 45. Find the customers who have placed orders with consecutive order IDs.

SELECT C.*
FROM Customers C
WHERE EXISTS (
 SELECT *
 FROM Orders O1
 WHERE C.CustomerID = O1.CustomerID
 AND EXISTS (
 SELECT *
 FROM Orders O2
 WHERE O1.CustomerID = O2.CustomerID AND O1.OrderID = O2.OrderID - 1
)
);

 SQL Queries - Intermediate Level
51. Find the customers who have placed the highest number of orders in their respective countries.

SELECT C.*
FROM Customers C
WHERE C.CustomerID IN (
 SELECT TOP 1 WITH TIES CustomerID
 FROM Orders O
 GROUP BY CustomerID, Country
 ORDER BY COUNT(*) DESC
);

 52. Retrieve the orders that have the highest total amount for each year.

SELECT O.*
FROM Orders O
WHERE O.OrderID IN (
 SELECT TOP 1 WITH TIES OrderID
 FROM Orders
 WHERE YEAR(OrderDate) = YEAR(O.OrderDate)
 ORDER BY TotalAmount DESC
);

 53. Show the employees who have not been assigned to any department but have a higher salary than the average salary of all employees.

SELECT * FROM Employees
WHERE Department IS NULL
AND Salary > (
 SELECT AVG(Salary) FROM Employees
);

 54. Retrieve the customers who have placed orders on all weekdays (Monday to Friday) and have spent the highest total amount in their respective cities.

SELECT C.*
FROM Customers C
WHERE EXISTS (
 SELECT * FROM Orders O1
 WHERE C.CustomerID = O1.CustomerID
 AND NOT EXISTS (
 SELECT * FROM Orders O2
 WHERE O1.CustomerID = O2.CustomerID
 AND DATEPART(WEEKDAY, O2.OrderDate) NOT BETWEEN 2 AND 6
)
)
AND C.CustomerID IN (
 SELECT TOP 1 WITH TIES CustomerID
 FROM Orders O
 GROUP BY CustomerID, City
 ORDER BY SUM(TotalAmount) DESC
);

 55. Find the employees who have more than one subordinate and have been hired before their manager.

SELECT E.*
FROM Employees E
INNER JOIN (
 SELECT ManagerID, COUNT(*) AS SubordinateCount
 FROM Employees
 GROUP BY ManagerID
 HAVING COUNT(*) > 1
) Subordinates ON E.EmployeeID = Subordinates.ManagerID
WHERE E.HireDate < (
 SELECT HireDate FROM Employees WHERE EmployeeID = E.ManagerID
);

61. Retrieve the top 5 customers with the highest average order amount.

SELECT TOP 5 C.*, AVG(O.TotalAmount) AS AverageOrderAmount
FROM Customers C
INNER JOIN Orders O ON C.CustomerID = O.CustomerID
GROUP BY C.CustomerID, C.FirstName, C.LastName
ORDER BY AverageOrderAmount DESC;

 62. Show the employees who have been assigned to multiple departments and have the highest salary in their respective departments.

SELECT E.*
FROM Employees E
INNER JOIN (
 SELECT Department, MAX(Salary) AS MaxSalary
 FROM Employees
 GROUP BY Department
) MaxSalaries ON E.Department = MaxSalaries.Department AND E.Salary = MaxSalaries.MaxSalary
WHERE E.EmployeeID IN (
 SELECT EmployeeID
 FROM Employees
 GROUP BY EmployeeID
 HAVING COUNT(DISTINCT Department) > 1
);

 63. Retrieve the customers who have placed orders on all weekdays (Monday to Friday) and have spent the highest total amount in their respective countries.

SELECT C.*
FROM Customers C
WHERE EXISTS (
 SELECT * FROM Orders O1
 WHERE C.CustomerID = O1.CustomerID
 AND NOT EXISTS (
 SELECT * FROM Orders O2
 WHERE O1.CustomerID = O2.CustomerID
 AND DATEPART(WEEKDAY, O2.OrderDate) NOT BETWEEN 2 AND 6
)
)
AND C.CustomerID IN (
 SELECT TOP 1 WITH TIES CustomerID
 FROM Orders O
 GROUP BY CustomerID, Country
 ORDER BY SUM(TotalAmount) DESC
);

 64. Find the employees who have more than one subordinate and have been hired before their manager, and their age is a prime number.

SELECT E.*
FROM Employees E
INNER JOIN (
 SELECT ManagerID, COUNT(*) AS SubordinateCount
 FROM Employees
 GROUP BY ManagerID
 HAVING COUNT(*) > 1
) Subordinates ON E.EmployeeID = Subordinates.ManagerID
WHERE E.HireDate < (
 SELECT HireDate FROM Employees WHERE EmployeeID = E.ManagerID
)
AND DATEDIFF(YEAR, E.HireDate, GETDATE()) IN (
 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59
);

 65. Retrieve the customers who have placed orders with consecutive order IDs and have spent the highest total amount in their respective cities.

SELECT C.*
FROM Customers C
WHERE EXISTS (
 SELECT *
 FROM Orders O1
 WHERE C.CustomerID = O1.CustomerID
 AND EXISTS (
 SELECT *
 FROM Orders O2
 WHERE O1.CustomerID = O2.CustomerID AND O1.OrderID = O2.OrderID - 1
)
)
AND C.CustomerID IN (
 SELECT TOP 1 WITH TIES CustomerID
 FROM Orders O
 GROUP BY CustomerID, City
 ORDER BY SUM(TotalAmount) DESC
);

 66. Show the customers who have not placed any orders in the last 6 months and have the highest total order amount.

SELECT TOP 1 WITH TIES C.*
FROM Customers C
LEFT JOIN Orders O ON C.CustomerID = O.CustomerID
WHERE O.OrderDate IS NULL OR O.OrderDate <= DATEADD(MONTH, -6, GETDATE())
ORDER BY O.TotalAmount DESC;

 67. Retrieve the orders with the top 5 highest total amount that have not been shipped yet.

SELECT TOP 5 O.*
FROM Orders O
WHERE O.IsShipped = 0
ORDER BY O.TotalAmount DESC;

 68. Find the employees who have been assigned to all departments available in the company.

SELECT E.*
FROM Employees E
WHERE NOT EXISTS (
 SELECT Department FROM Departments
 WHERE NOT EXISTS (
 SELECT * FROM Employees
 WHERE EmployeeID = E.EmployeeID AND Department = Departments.Department
)
);

 69. Show the customers who have placed the highest number of orders in the last 3 months and have spent the highest total amount in their respective countries.

SELECT C.*
FROM Customers C
WHERE C.CustomerID IN (
 SELECT TOP 1 WITH TIES CustomerID
 FROM Orders O
 WHERE O.OrderDate >= DATEADD(MONTH, -3, GETDATE())
 GROUP BY CustomerID
 ORDER BY COUNT(*) DESC
)
AND C.CustomerID IN (
 SELECT TOP 1 WITH TIES CustomerID
 FROM Orders O
 GROUP BY CustomerID, Country
 ORDER BY SUM(TotalAmount) DESC
);

SQL Queries - Advanced Level

 70. Retrieve the top 3 employees with the highest average salary in their respective departments, and their age is a prime number.

SELECT TOP 3 E.*
FROM Employees E
INNER JOIN (
 SELECT Department, AVG(Salary) AS AvgSalary
 FROM Employees
 GROUP BY Department
) AvgSalaries ON E.Department = AvgSalaries.Department AND E.Salary = AvgSalaries.AvgSalary
WHERE DATEDIFF(YEAR, E.HireDate, GETDATE()) IN (
 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59
);

71. Retrieve the top 5 departments with the highest average salary of employees whose age is a prime number.

SELECT TOP 5 Department, AVG(Salary) AS AvgSalary
FROM Employees
WHERE DATEDIFF(YEAR, HireDate, GETDATE()) IN (
 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59
)
GROUP BY Department
ORDER BY AvgSalary DESC;

 72. Find the customers who have placed orders with a total amount that is a perfect square.

SELECT DISTINCT C.*
FROM Customers C
INNER JOIN Orders O ON C.CustomerID = O.CustomerID
WHERE SQRT(O.TotalAmount) = CAST(SQRT(O.TotalAmount) AS INT);

 73. Show the orders that have the same total amount as the average total amount of orders for each year.

SELECT O.*
FROM Orders O
WHERE O.TotalAmount IN (
 SELECT AVG(TotalAmount) AS AvgAmount
 FROM Orders
 WHERE YEAR(OrderDate) = YEAR(O.OrderDate)
 GROUP BY YEAR(OrderDate)
);

 74. Retrieve the employees who have been assigned to the maximum number of departments.

SELECT E.*
FROM Employees E
WHERE EmployeeID IN (
 SELECT TOP 1 WITH TIES EmployeeID
 FROM Employees
 GROUP BY EmployeeID
 ORDER BY COUNT(DISTINCT Department) DESC
);

 75. Find the customers who have placed orders with the same total amount as another customer from a different country.

SELECT C.*
FROM Customers C
WHERE EXISTS (
 SELECT * FROM Orders O1
 WHERE C.CustomerID = O1.CustomerID
 AND EXISTS (
 SELECT * FROM Orders O2
 WHERE O1.TotalAmount = O2.TotalAmount
 AND O1.CustomerID <> O2.CustomerID
 AND C.Country <> (
 SELECT Country FROM Customers WHERE CustomerID = O2.CustomerID
)
)
);

 76. Retrieve the employees who have not been assigned to any department and have a higher salary than any employee assigned to a department.

SELECT * FROM Employees
WHERE Department IS NULL
AND Salary > (
 SELECT MAX(Salary) FROM Employees WHERE Department IS NOT NULL
);

 77. Show the customers who have placed orders with consecutive order IDs and have spent the highest total amount in their respective countries.

SELECT C.*
FROM Customers C
WHERE EXISTS (
 SELECT *
 FROM Orders O1
 WHERE C.CustomerID = O1.CustomerID
 AND EXISTS (
 SELECT *
 FROM Orders O2
 WHERE O1.CustomerID = O2.CustomerID AND O1.OrderID = O2.OrderID - 1
)
)
AND C.CustomerID IN (
 SELECT TOP 1 WITH TIES CustomerID
 FROM Orders O
 GROUP BY CustomerID, Country
 ORDER BY SUM(TotalAmount) DESC
);

 78. Retrieve the orders with the top 5 highest total amount that have not been shipped yet, and the customers who placed these orders.

SELECT TOP 5 O.*, C.FirstName, C.LastName
FROM Orders O
INNER JOIN Customers C ON O.CustomerID = C.CustomerID
WHERE O.IsShipped = 0
ORDER BY O.TotalAmount DESC;

 79. Find the employees who have been assigned to all departments available in the company, and their age is an odd number.

SELECT E.*
FROM Employees E
WHERE NOT EXISTS (
 SELECT Department FROM Departments
 WHERE NOT EXISTS (
 SELECT * FROM Employees
 WHERE EmployeeID = E.EmployeeID AND Department = Departments.Department
)
)
AND DATEDIFF(YEAR, E.HireDate, GETDATE()) % 2 <> 0;

SQL Queries - Expert Level

 80. Show the top 3 departments with the highest average salary of employees, and the employees who have the highest salary in each of these departments.

SELECT D.Department, E.*
FROM (
 SELECT TOP 3 Department, AVG(Salary) AS AvgSalary
 FROM Employees
 GROUP BY Department
 ORDER BY AvgSalary DESC
) D
INNER JOIN Employees E ON D.Department = E.Department
WHERE E.Salary = (
 SELECT MAX(Salary) FROM Employees WHERE Department = D.Department
);

91. Retrieve the customers who have placed the highest number of orders on weekends (Saturday and Sunday).

SELECT TOP 5 C.*, COUNT(*) AS WeekendOrders
FROM Customers C
INNER JOIN Orders O ON C.CustomerID = O.CustomerID
WHERE DATEPART(WEEKDAY, O.OrderDate) IN (1, 7) -- 1=Sunday, 7=Saturday
GROUP BY C.CustomerID, C.FirstName, C.LastName
ORDER BY WeekendOrders DESC;

 92. Show the employees who have not been assigned to any department and have the highest salary in the company.

SELECT TOP 1 WITH TIES *
FROM Employees
WHERE Department IS NULL
ORDER BY Salary DESC;

 93. Retrieve the customers who have placed orders with the total amount closest to the average total amount of all orders.

SELECT TOP 5 C.*
FROM Customers C
INNER JOIN Orders O ON C.CustomerID = O.CustomerID
ORDER BY ABS(O.TotalAmount - (SELECT AVG(TotalAmount) FROM Orders)) ASC;

 94. Find the customers who have placed orders on their birthdays.

SELECT C.*
FROM Customers C
INNER JOIN Orders O ON C.CustomerID = O.CustomerID
WHERE DAY(O.OrderDate) = DAY(CAST(DATEADD(YEAR, DATEDIFF(YEAR, BirthDate, GETDATE()), BirthDate) AS DATE))
AND MONTH(O.OrderDate) = MONTH(CAST(DATEADD(YEAR, DATEDIFF(YEAR, BirthDate, GETDATE()), BirthDate) AS DATE));

 95. Show the employees who have been assigned to departments with consecutive IDs.

SELECT E.*
FROM Employees E
WHERE NOT EXISTS (
 SELECT * FROM Departments D
 WHERE NOT EXISTS (
 SELECT * FROM Employees
 WHERE EmployeeID = E.EmployeeID AND Department = D.DepartmentID
)
);

 96. Retrieve the employees who have the same first name as another employee and their salaries are within $1000 of each other.

SELECT E.*
FROM Employees E
WHERE EXISTS (
 SELECT * FROM Employees E2
 WHERE E.EmployeeID <> E2.EmployeeID
 AND E.FirstName = E2.FirstName
 AND ABS(E.Salary - E2.Salary) <= 1000
);

 97. Find the customers who have placed orders with the same total amount as other customers and have the same city as those customers.

SELECT C.*
FROM Customers C
WHERE EXISTS (
 SELECT * FROM Orders O1
 WHERE C.CustomerID = O1.CustomerID
 AND EXISTS (
 SELECT * FROM Orders O2
 WHERE O1.TotalAmount = O2.TotalAmount
 AND O1.CustomerID <> O2.CustomerID
 AND C.City = (
 SELECT City FROM Customers WHERE CustomerID = O2.CustomerID
)
)
);

 98. Show the employees who have the same hire year as the highest-earning employee in each department.

SELECT E.*
FROM Employees E
WHERE E.HireDate IN (
 SELECT MAX(HireDate) FROM Employees WHERE Department = E.Department
);

 99. Retrieve the customers who have placed orders on the same day as their birthdays.

SELECT C.*
FROM Customers C
INNER JOIN Orders O ON C.CustomerID = O.CustomerID
WHERE CAST(O.OrderDate AS DATE) = CAST(DATEADD(YEAR, DATEDIFF(YEAR, BirthDate, GETDATE()), BirthDate) AS DATE);

 100. Find the employees who have been assigned to a department but have not received a salary raise in the last 2 years.

SELECT E.*
FROM Employees E
WHERE E.Department IS NOT NULL
AND E.EmployeeID NOT IN (
 SELECT EmployeeID FROM SalaryHistory WHERE SalaryDate >= DATEADD(YEAR, -2, GETDATE())
);

101. Retrieve the customers who have placed the highest number of orders on weekdays (Monday to Friday) during the last 3 months.

SELECT TOP 5 C.*, COUNT(*) AS WeekdayOrders
FROM Customers C
INNER JOIN Orders O ON C.CustomerID = O.CustomerID
WHERE DATEPART(WEEKDAY, O.OrderDate) BETWEEN 2 AND 6 -- Monday to Friday
AND O.OrderDate >= DATEADD(MONTH, -3, GETDATE())
GROUP BY C.CustomerID, C.FirstName, C.LastName
ORDER BY WeekdayOrders DESC;

 102. Show the employees who have not been assigned to any department and have a higher salary than any employee in the company's history.

SELECT TOP 1 WITH TIES *
FROM Employees
WHERE Department IS NULL
AND Salary > (
 SELECT MAX(Salary) FROM Employees
);

 103. Retrieve the customers who have placed orders with the total amount closest to the average total amount of all orders in their respective countries.

SELECT C.*
FROM Customers C
WHERE EXISTS (
 SELECT * FROM Orders O1
 WHERE C.CustomerID = O1.CustomerID
 AND EXISTS (
 SELECT * FROM Orders O2
 WHERE O1.Country = O2.Country
 AND ABS(O1.TotalAmount - (SELECT AVG(TotalAmount) FROM Orders WHERE Country = O2.Country)) <=
 ABS(O2.TotalAmount - (SELECT AVG(TotalAmount) FROM Orders WHERE Country = O2.Country))
)
);

 104. Find the customers who have placed orders on a leap day (February 29th).

SELECT C.*
FROM Customers C
INNER JOIN Orders O ON C.CustomerID = O.CustomerID
WHERE MONTH(O.OrderDate) = 2 AND DAY(O.OrderDate) = 29;

 105. Show the employees who have been assigned to departments with consecutive IDs and have the highest salary among their peers.

SELECT E.*
FROM Employees E
WHERE NOT EXISTS (
 SELECT * FROM Departments D
 WHERE NOT EXISTS (
 SELECT * FROM Employees
 WHERE EmployeeID = E.EmployeeID AND Department = D.DepartmentID
)
)
AND E.Salary = (
 SELECT MAX(Salary) FROM Employees WHERE Department = E.Department
);

 106. Retrieve the employees who have received at least one salary raise every year since their hire date.

SELECT E.*
FROM Employees E
WHERE E.EmployeeID NOT IN (
 SELECT EmployeeID FROM SalaryHistory
 WHERE YEAR(SalaryDate) < YEAR(E.HireDate)
)
AND E.EmployeeID NOT IN (
 SELECT EmployeeID FROM SalaryHistory
 GROUP BY EmployeeID
 HAVING COUNT(DISTINCT YEAR(SalaryDate)) < DATEDIFF(YEAR, E.HireDate, GETDATE()) + 1
);

 107. Find the customers who have placed orders on their birthdays and the total amount spent on those orders is greater than $100.

SELECT C.*
FROM Customers C
INNER JOIN Orders O ON C.CustomerID = O.CustomerID
WHERE CAST(O.OrderDate AS DATE) = CAST(DATEADD(YEAR, DATEDIFF(YEAR, BirthDate, GETDATE()), BirthDate) AS DATE)
AND O.TotalAmount > 100;

 108. Show the employees who have a salary that is both the minimum and maximum salary in the company.

SELECT * FROM Employees
WHERE Salary = (
 SELECT MIN(Salary) FROM Employees
) AND EmployeeID IN (
 SELECT EmployeeID FROM Employees
 WHERE Salary = (
 SELECT MAX(Salary) FROM Employees
)
);

 109. Retrieve the customers who have placed orders on the same day of the week (e.g., all orders on Mondays).

SELECT C.*
FROM Customers C
INNER JOIN Orders O ON C.CustomerID = O.CustomerID
WHERE DATEPART(WEEKDAY, O.OrderDate) = DATEPART(WEEKDAY, (SELECT MIN(OrderDate) FROM Orders));

 110. Find the employees who have received a salary raise on their birthday.

SELECT E.*
FROM Employees E
INNER JOIN SalaryHistory S ON E.EmployeeID = S.EmployeeID
WHERE CAST(S.SalaryDate AS DATE) = CAST(DATEADD(YEAR, DATEDIFF(YEAR, E.BirthDate, GETDATE()), E.BirthDate) AS DATE);

 Conclusion

 In conclusion, SQL queries are essential tools for working with relational databases. They allow us to extract, manipulate, and transform data to gain valuable insights and answer specific questions. In this practice session, we covered a wide range of SQL queries, starting from basic queries and gradually increasing the complexity for both beginners and experienced users.

 For Beginners

 For beginners, we focused on fundamental SQL concepts such as SELECT, FROM, WHERE, GROUP BY, HAVING, ORDER BY, and JOIN clauses. We practiced writing queries to retrieve, filter, and aggregate data from different tables.

 Advancing Complexity

 As the practice advanced, we delved into more complex queries involving subqueries, common table expressions (CTEs), window functions, and set operations. We also explored scenarios like handling NULL values, using string functions, and working with date and time data.

 For Experienced Users

 For experienced users, we presented challenging queries involving advanced techniques like recursive CTEs, PIVOT, and complex subqueries. These queries demanded a deeper understanding of SQL and showcased how to tackle real-world scenarios effectively.

 Continued Learning

 The practice session also provided HTML-formatted SQL queries, making it convenient for users to copy and paste them into their blogs or practice environments. It's important to note that while these examples cover a wide array of SQL query types, the field of SQL is vast, and there is always more to learn. Continuously practicing and exploring new scenarios will help developers and data analysts become more proficient in SQL and gain a deeper understanding of database management and data manipulation.

 Best Practices

 Remember, understanding the database schema and the underlying data is crucial for writing effective and optimized SQL queries. Always test your queries thoroughly and ensure they produce the desired results before using them in production environments.

 Happy querying and may this practice session contribute to your growth as a skilled SQL practitioner!

Post a Comment
Share	
	
	
	
	
	
	
	
	

Labels#INTERVIEW QUESTIONS, #MS SQL SERVER, #SLIDER

Newer

Older

Comments

	

	AI INTERVIEW QUESTION
	Must visit - Synapse Blog
	150+ Python DataFrame Practice Exercises
	150+ Azure SynapseML Interview Questions
	110+ PySpark Practice Exercises Interview Questions
	110 SQL Query Interview Questions
	30 Large Language Models(LLM) AI Interview Questions
	100+ Azure Synapse Interview Question
	For Loop in PySpark/Python

Search This Blog

	

	ASP.NET AND JQUERY INTERVIEW QUESTION
	ASP.NET: Web Config Interview Question
	ASP.NET: View State Interview Question
	ASP.NET: Session Interview Question
	ASP.NET: Session Interview Question
	ASP.NET: Security Interview Question
	ASP.NET: Catching Interview Question
	C# OOPS Interview Question
	MORE Interview Question
	JQUERY: Interview Question Set-1
	JQUERY: Interview Question Set-2
	JAVA-SCRIPT: Interview Question Set-1
	JAVA-SCRIPT: Interview Question Set-2
	ASP.NET MVC: Interview Question Set-1

Featured Post

	

Mastering Azure Synapse Analytics: Top 100 Interview Questions with Detailed Answers

Top 100 Azure Synapse Analytics Interview Questions with Detailed Answers Super…

You may like it

	
	

	Sql Server 2019 Interview Questions

	17 Sql Server Function Interview Questions

	Sql Server 2017 Interview Questions
	Sql Server Basic Interview Query Set-1
	Sql Server Basic Interview Query Set-2
	Sql Server Date-Time Interview Query SET-3
	Sql Server Salary Interview Query SET-4
	Sql Server Group By Interview Query SET-5
	Sql Server Join Interview Query SET-6
	Sql Server Tricky Join Interview Query SET-7
	

Sql Server DDL Interview Query SET-8
	Small but very Tricky Sql Server Query SET-9
	Very Much Tricky Query (not 4 fresher)SET-10
	Sql Server Complex Interview Query SET-11
	
	
	Sql Server Datatype Interview Questions
	Sql Server View Interview Questions
	Sql Server Index Interview Questions
	TCS Tricky Sql Interview Queries
	HCL Sql Interview Queries
	Sql Server SP Interview Questions
	Sql Server Trigger Interview Questions
	Sql Server Temp Table Interview Questions
	Sql Server 2016 Interview Questions
	Sql Server Performance Tuning Interview Q.
	Sql Server Constraints Interview Questions
	Sql Server Storage/Size Interview Questions
	Sql Server Very Basic Interview Questions
	Sql Server Quiz for Fresher
	Sql Server Icon Quiz for All
	Sql Server 300+ Theoretical Interview Questions
	Sql Server Complete Set
	
			

		
	
			POPULAR POSTS
		
	
			
			10 MOST DIFFICULT INTERVIEW QUESTIONS
		
	5 BEST INTERVIEW TIPS
	YOUR 10 MISTAKE DURING INTERVIEW
	2016 TOP 20 GROUP DISCUSSION TOPICS
	HOW SQL PERFORMANCE AFFECTED BY DATATYPE

Useful Links

	Resources
	Privacy
	Community
	Terms
	Help
	Contact

External Sources

	Facebook @iqp
	postPerPage

Subscription Form

Get updates right in your inbox. Join to get notified with all new stuff

Copyright © 2022 Elyza. Powered by Blogger

	
	

Archive

Archive
March (1)
February (16)
January (6)
December (391)
November (792)
October (1008)
September (879)
August (255)
July (65)
May (1)
July (10)
September (2)
April (1)
February (1)
November (1)
October (5)
November (4)
August (1)
May (2)
March (5)
December (6)
November (1)
September (3)
August (3)
July (10)
June (43)
May (2)
April (8)
March (17)
February (232)
January (196)
December (20)
November (75)
October (21)
September (3)
July (10)
June (8)
May (30)
April (14)
March (26)
February (14)
January (59)
December (4)
November (20)
October (7)
September (7)
August (21)
July (3)
June (10)
May (8)
April (1)
March (15)
February (46)
January (9)
December (10)
November (9)
October (5)
September (38)
August (11)
July (19)
June (7)
May (19)
April (19)
February (1)

Contact Form

Send

